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Abstract—Surface defect detection is challenging due to 
varying defect types and defect novelties. Because of this, it is hard 
for algorithms to implement across datasets. Moreover, current 
automated optical inspection (AOI) machines cannot handle this 
novelty effectively. In this work, we develop a new method for 
surface defect detection based on generative models, which can 
detect novelty according to learned distributions. Experimental 
results on real industrial datasets show that the proposed method 
can successfully construct the surface texture pattern generator.  
By transforming the image through the generator to the 
corresponding latent space, the defects can be separated 
effectively without a tedious effort of annotation in a large amount 
of training data.  

Keywords—automated optical inspection, surface defect 
detection, generative adversarial networks 

I. INTRODUCTION 
Automated optical inspection (AOI) is critical in 

manufacturing processes in order to inspect defects and increase 
yield rate. In general, AOI machines usually deal with two-
dimensional images rather than three-dimensional depth ones. 
Thus, surface defect detection [1], [2] becomes a major task in 
AOI applications. However, in real inspection processes, the 
defects vary among different types of surfaces, it is then hard to 
design a general approach to be suitable for all datasets 
collected. Moreover, the defects themselves are sometimes 
formed during manufacturing processes, in which unexpected 
events such as vibration or temperature change may induce new 
defects. This situation makes traditional image processing 
methods impossible to solve as defects must be modeled in 
advance. On the other hand, modeless methods such as the 
neural network [3], [4] also need to re-train the classifiers, which 
is time-consuming. In the absence of a standard definition of 
defect types, the problem becomes even more complicated.  

Simply speaking, the problem described above is to 
automatically detect surface defects without training or 
modeling of the defect images in advance. The difficulty level 
depends on the texture of the defect-free surface. For surfaces 
without any pattern or with periodic patterns, to detect new 
defects is relatively simple since one can easily model the 
background. However, in manufacturing, most of the surfaces of 
work pieces or products contain patterns that exhibit no 

periodicity and vary among them. It is then difficult to build the 
texture model analytically. Secondly, in some cases such as solar 
panel, certain types of defects have close visual appearances to 
the normal patterns. Thus, finding appropriate models or feature 
descriptions to precisely distinguish these defects is a very 
difficult task. In this paper, we propose a novel method to solve 
the problem using the technique of generative adversarial 
networks (GANs). The method is to construct a generator that 
can generate the correct mapping of positive images. Next, we 
can distinguish the negative images which do not conform to 
that mapping. It is shown that the proposed method is robust to 
distinguish defective images from normal ones without prior 
knowledge of the defects. That is to say, it is not necessary to 
annotate the labels of defective samples like the traditional 
training procedure of neural networks. 

The proposed method belongs to one-class classification 
problem. Our main contributions can be summarized as follows. 
(1) We proposed a novel workflow for surface novelty defect 
inspection under complex background texture. (2) Our method 
can effectively distinguish defects which are not known in 
advance. (3) We show that our method does not require large 
number of training data and defect annotation is not needed. (4) 
Our method is effectively adaptable to various datasets. 

II. RELATED WORKS 

A. Surface Defect Detection 
The computer vision methods of surface defect detection 

depend on their objectives and are categorized into several 
approaches. Ngan et al. [5] and Xie [6] focused on fabric and 
texture analysis, while Neogi et al. [1] discussed several 
methods related to steel surface inspection which includes both 
supervised and unsupervised algorithms. On the other hand, 
Bouchot et al. [7] used template matching for regularly textured 
surfaces, which reduces the tuning of parameters. However, this 
method requires exact match of textural information in the 
background. For real-time inspection, Hu [8] implemented ring 
Gabor Filter on surface defect detection. Most of the methods 
require annotation of the defects by human first for subsequent 
analysis. In addition, these algorithms developed are usually 
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application dependent and need significant efforts of parameter 
tuning for optimal performance.  

B. Generative Adversarial Networks 
GAN was first proposed by Goodfellow et al. [9], which 

optimizes the generator through a minimax game. The 
optimization procedure and purposes had also been improved by 
several works [10]-[14]. Arjovsky et al. [10] and Gulrajani et al. 
[11], stabilized the training of GAN by improving the loss 
function. Furthermore, Mirza et al. [12] and Chen et al. [13] 
modified the structure and applied additional information to 
generate images conditionally.  

For the operations of latent representation, Radford et al. [14] 
proposed Deep Convolutional Generative Adversarial Network 
(DCGAN), which only used convolutional layers in the 
architecture. They showed that arithmetic operations in the 
latent space is feasible in producing customized images. In other 
words, the latent space can be viewed as a transformed space of 
the target image data. It then follows that the latent space might 
be a good candidate of the detection if an image belongs to the 
target group. Based on this idea, we use DCGAN as our GAN 
architecture. 

C. Reverse Generative Models 
In representation learning, many works passed data through 

an encoder [15] to get latent representations. However, some 
works [16], [17] attempted to learn the latent space by reversing 
the training procedure of the generator in GAN. Due to the 
differentiability of the generator, Bora et al. [18] applied 
gradient descent algorithm with respect to the latent 
representations such that the corresponding generated images 
have small measurement errors. Bruna et al. [19] further 
investigated on the theoretical conditions for a generator to be 
reversible. The reversed training to obtain the latent space for 
representation is adopted in this paper. 

III. GAN-BASED ANOMALY DETECTION 
In this section, we describe the proposed workflow for 

surface defect inspection. The workflow is divided into four 
components. First, the generative mapping from the latent space 
to the image space is computed followed by a qualifier to access 
the degree of success of the generator. In testing stage, the 

optimized latent representations are computed by back-
propagation from the image space. We further measure the 
Fréchet distances of these latent representations, which serve as 
the classification mechanism. The workflow requires no 
parameter tuning. Its detail is shown in Fig.1. 

A. Generative Mapping 
GANs are well-known for their ability to capture the 

distribution of the given training dataset [20]. Rather than 
obtaining plausible results of generated images, we focus on the 
learned mapping of GANs from the latent space to the image 
space.  

The common structure of GAN consists of two neural 
network modules, one is generator G, and the other is 
discriminator D. The goal of the generator is to generate 
plausible images to fool discriminator, while the discriminator 
is to make judges on whether these images are from real images 
or results of the generator. Geometrically, the generator serves 
as a decoder, which projects the latent codes in the latent space 
to the image space as illustrated in Fig.2. The latent codes are 
randomly sampled from Gaussian distribution in a unit ball. 
Conversely, the discriminator encodes the incoming images 
from real images and generated images and then classify them 
according to the correct labels.  

The formulation of GAN is as following, 

 

, 

where  and  represent images and latent codes respectively. 
For the discriminator, the objective function maximizes the 

(1) 

 
Figure 1. The workflow of our proposed method. 

 
Figure 3. GAN structure we used in our proposed method. 

 
Figure 2. The illustration of using generative adversarial network in the 
training stage. 
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probability that  comes from the real data distribution, and the 
probability that , i.e. generated images, comes from 
generated data distribution. On other hand, the objective 
function for the generator minimize the probability that  
comes from the generated data distribution, i.e. it tries to make 
the generated images as real as possible. The architecture of 
GAN is shown in Fig.3. For surface defect detection, we train a 
GAN only using positive data, i.e., to learn the positive mapping 
from the latent space to the image space. 

B. Evaluation and Visualization 
To acquire an optimal generator, two measurements are 

applied in our experiments. Intuitively, we directly evaluate 
mean squared error (MSE) and similarity structural analysis 
(SSIM) [21] on our generated images because in industrial 
datasets, the images are often structured. MSE and Peak Signal-
to-Noise Ratio (PSNR) are common metrics for the evaluation 
of image quality. However, PSNR is only suitable for the 
evaluation of restoration of images. Given two images  
and  with the dimension of , we can compute its 
MSE as 

, 

SSIM further enhance the measurement of MSE, which 
takes luminance, contrast, and structure information into 
consideration. This measurement is suitable for evaluating 
similarities between two natural images, to which industrial 
images often belong. Given two images  and , we compute 
SSIM according to their mean  and , the variance  and 

, and small numbers  and  as shown in (3). 

. 

Alternatively, t-distributed Stochastic Neighbor Embedding 
(t-SNE) [22] is well suited for visualization of high-dimensional 
datasets. We use t-SNE to visualize the similarities between 
generated images and real images. The objective function 
minimizes Kullback-Liebler (KL) divergence of high-
dimensional map  and low-dimensional map . The 
pairwise similarities of the maps  and  are given by (4) and 
(5). 

, 

. 

where in (4),  and  represent high-dimension data points and 
the variance, while in (5),  represents low-dimensional data 
points. Hence, if the generated images and real images are close 
to each other in the corresponding low-dimensional map, t-SNE 

can further provide a verification of how well the generator is 
constructed. 

C. Back-propagation to the Latent Space 
Given the learned generator, the latent representations of the 

testing data are computed through the optimization procedure. 
The testing data contains both defect-free images and defective 
images. However, the subtle differences between these two 
categories often confuse current AOI machines such that it 
cannot identify them correctly. Back-propagating to the latent 
space enables us to discriminate the differences effectively. In 
this procedure, we fix the parameters of the generator and 
directly perform gradient descent to the latent representations.  

D. Statistics of the Latent Representations 
The effectiveness of using the latent representations to 

distinguish between defect-free and defective images depends 
on the distance of the corresponding latent sub-spaces. The sub-
space is usually characterized by statistics for the data-driven 
approach. In our proposed approach, we calculate the statistics 
according to Fréchet distance [23], which was also used in [24] 
to calculate the statistical differences between features. Fréchet 
distance not only computes the distances but also finds the 
minimal course of the curves, which in our case, is the set of 
latent representations. Given two sets of mean and variance 
( ) and ( ), we can calculate their Fréchet distances in 
(6). 

. 

IV. EXPERIMENTAL RESULTS 
The proposed method is applied to defect inspection of two 

products in manufacturing: solar panel and wood panel, which 
is illustrated in Table I. For solar panel dataset, there are 200k 
defect-free images and each type of defects has 30k images. For 
wood texture dataset, each label only has 2k images. We 
randomly sample 90% of the defect-free images for training. 
The GAN computation is performed on a single Nvidia GeForce 
GTX 1060 6GB GPU.  

A. Evaluation of Generative Models 
For the evaluation of GAN, we randomly select from 

generated images and real images to form pairs and calculate 
their MSE error and SSIM value respectively. Fig.5(a) shows a 
successful case that the generator can generate images that are 
close to real ones while in Fig.5(b), the generator is not optimal 

(2) 

 
Figure 4. Illustration of back-propagating to the latent space. 

(3) 

(4) 

(5) 

(6) 
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and the generated image is visually different to the real one. The 
MSE and SSIM values shown for both cases indicates that these 
two indices are consistent to the performance of GAN results. 

The t-SNE visualization is computed directly on the image 
space of solar panel and wood texture datasets as shown in 

Fig.6(a) and Fig.6(b) respectively. For each result, red cross dots 
represent the generated images, whereas blue circle dots 
represent real images. The results show that the generated 
images are within the same manifold of real images, which again 
verify that our generative model has learned the correct mapping 
from the latent space to the image space. 

B. Defect Separation in the Latent Space 
 Table I shows the defective images and normal images in 
two different datasets according to ground-truth annotations. 
Graphically, solar panel dataset is highly structured in the 
background, while wood texture dataset is rather random in the 
background. Noted that in solar panel dataset, the defects are 

(a) 

 

 
(b) 

 

 

Figure 5. MSE error and SSIM value between pairs of generated images 
and real images of solar panel dataset and wood texture dataset. The 
desired results are shown in 5(a), while in 5(b), the generator is not optimal. 

(a) 

 
(b) 

 

Figure 6. t-SNE visualization of generated images and real images of solar 
panels in (a), and wood textures in (b). 

TABLE I. DEFECTIVE DATA AND NORMAL DATA OF EACH DATASET 

Solar Panel Wood Texture 
Defective Normal Defective Normal 

        
Type I defect Type II defect None Crack Hot glue Lubricant Marker None 
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nearly undiscernible for human vision, and it also cannot be 
detected by current AOI machines.  

 We show that our proposed method can effectively detect the 
differences after optimizing the latent representations of these 
datasets. Table II shows the corresponding Fréchet distances 
given the types of testing datasets. Besides calculating on 
optimized defective latent representations, we also calculate on 
optimized normal ones to validate our proposed method. In this 
table, we can easily see that the Fréchet distances of the normal 
latent representations are an order of magnitude smaller than the 

defective ones. In some cases, especially in solar panels, the 
differences are almost undetectable in the image space. Thus, 
our method is powerful in separating these defects. The defect 
separation phenomenon is illustrated in Fig.7. We again 
compare the differences with t-SNE visualization and found that 
we successfully separate the originally inseparable images in the 
optimized latent space. This also suggests that our method can 
be applied to different datasets, which is not dataset-specific. 

 Furthermore, it is also possible to separate different defects 
from each other according to Fréchet distances between them as 
shown in Table III. Each pair of defects exhibits different 
distributions. Consequently, if a new defect appears, we can 
detect it by the novel distribution of that new defect, which can 
be seen as the classification labels. 

C. Accuracies & Elapsed Time 
In real applications, the computation time should be kept as 

small as possible. Hence, to find the best accuracy, we measure 
the losses and determine how many iterations are needed in 
back-propagating the latent vectors. Fig.8(a) shows that the 
value of the loss function converges after around 2000 
iterations, where in Fig.8(b), the accuracy reaches above 93.5%. 

(a) 

 
(b) 

 
Figure 7. Phenomenon of defect enlargement. 7(a): t-SNE on the image 
space. 7(b): t-SNE on the optimized latent space. 

(a) 

 
(b) 

 
Figure 8. The loss plot 8(a) and the accuracies 8(b) in optimizing the latent 
representations. 

↑96%
↑93.5%

TABLE II. FRÉCHET DISTANCES OF DEFECTS IN TESTING DATASETS 

Dataset Types 
Fréchet Distance of 

Latent Representations 

Solar Panel 
Normal 0.011 

Type I defect 0.315 
Type II defect 0.402 

Wood Texture 

Normal 0.079 
Crack defect 0.714 

Marker defect 0.567 
Lubricant stain defect 0.626 

Hot glue defect 0.685 

TABLE III. FRÉCHET DISTANCES OF DIFFERENT TESTING DATASETS 

Dataset Defect Type Defect Type 
Fréchet Distance of 

Latent Representations 
Solar 
Panel Type I Type II 0.214 

Wood 
Texture 

Crack Marker 0.408 
Crack Lubricant 0.374 
Crack Hot glue 0.479 

Marker Lubricant 0.201 
Marker Hot glue 0.133 

Lubricant Hot glue 0.238 
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Therefore, we can reduce the number of iteration and speed up 
inspection procedure in real applications while maintaining 
good accuracy. Table IV further shows the average runtime per 
pixel of the proposed method for each dataset. The number of 
iterations is set to 5000. From the results, the average runtime 
per pixel for different datasets do not exceed 0.25 milliseconds.  

Finally, the proposed method is compared with a CNN-
based classifier. We used VGG-19 [25] network as our CNN 
structure, which obtained the best accuracy among other 
networks on our datasets and we ran for 50 epochs. However, 
Table IV shows that our method achieves a better accuracy and 
requires less time on training. Moreover, CNN-based classifier 
needs extra annotations on different defects in advance, while 
our method does not need this prior knowledge to inspect 
defects.  

TABLE IV. AVERAGE RUNTIME OF GAN-BASED METHOD 

Dataset Average Runtime (ms) 
Solar Panel 0.178 

Wood Texture 0.211 

TABLE V. COMPARISONS WITH CNN-BASED MODEL ON SOLAR PENAL 

Method Overall Accuracy (%) Training Time (s) 
VGG-19 network 89.48% 18000 

Our method 93.75% 3262 

V. CONCLUSION 
We proposed a novel method for industrial surface novelty 

defect detection. The core of the method is that we use a 
generative network and a representation learning mechanism 
according to statistics to detect novelties. From experiments in 
two representative industrial datasets, our method is able to 
distinguish defective images from normal ones in the optimized 
latent space. It is difficult to detect these defects directly using 
traditional methods. The proposed method also achieves a 
better accuracy compared to CNN-based method, and the time 
required on training is almost 6 times less than a CNN-based 
classifier.  
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